WARRIORS ACADEMY - DEFENCE TECHNOLOGY SERIES:

MODERN COMMUNICATIONS ELECTRONIC WARFARE

SYNOPSIS:

In a nutshell, this course covers the intercept, analysis, geo-locating, jamming & spoofing of tactical military communications and their countermeasures (with lessons from Ukraine war, Middle East wars etc)

In 1985, a prescient paper submitted to Joint Staff titled **"Precision warfare: GPS + Datalinks"** by the lecturer proposed the use of then-nascent digital technologies riding on Moore's law such as spread-spectrum communications, network-routing, GPS positioning-timing, target-detection & locating technologies, drones etc to improve battlefield efficiency.

The idea was to create a network-centric fighting force wherein information superiority enables precision warfare to be waged "remotely" with GPS-guided sensors & shooters/munitions, all navigating & sharing coordinates on a common GPS grid & connected via a secure communications network, with no fratricide to blue forces. All that came to pass, in large measure, in ensuing conflicts such as Iraq/Balkan/Afghan/Syrian wars

The latest war in Ukraine brought to fore the continuation of this trend but now in an epic existential battle of tech equals. Two superpowers & their allies are now attacking each other's network-centric strategies & comms assets with the best asymmetric countermeasures their best minds can devise, with and without the luxury of time. Therein lies the bolts & nuts, heart & soul of modern communications warfare ushered in by the Ukraine war.

This course, from a hands-on industry pioneer in communications EW & navigation warfare, is a rite-ofpassage for military users of modern communications & comms EW. It is for users who have a professional imperative to understand their craft from first principles, thereby enabling them the requisite competence & asymmetric mindset to break new ground, to stay way ahead of one's competitors/adversaries in this evolving cat & mouse game

This course will first provide theoretical foundations to understand design rationale & operation of various comms & EW assets & their vulnerabilities. The lecturer will then discuss various techniques to exploit these vulnerabilities and counter-counter measures to mitigate them.

The lecturer has a knack for original, first-principle ground-breaking reasoning, elegantly connecting the dots, making complicated things simple and interesting for professionals from any background. It offers fresh perspectives and non-trivial insights to understanding various associated issues not found in public literature, often leading to new breakthroughs in solutioning to old problems & disrupting the complacent status quo, like it did so very often for the lecturer

COURSE CONTENTS:

	1. MOTIVATIONS FOR COMMS EW
	1.1 Comms Warfare Tactics through the ages
	1.2 Revolution in Military Affairs – Role of info and Network-Centric Warfare
	1.3 Building Blue-force/Red-force Picture – Role of GPS/Sensor Networks
	1.4 Battle of OODA, Sensor-shooter loops – Role of Secure Comms & EW
	1.5 Comms EW and Comms Intelligence - Exploiting Vulnerabilities of Comms
	Networks in Modern Battlefields (with examples from Ukraine war, Middle East wars etc)
	2a. INTRODUCTORY CONCEPTS ON WIRELESS COMMS
	2.1 Concepts of info representation, time vs frequency domain, phasors, Constellation diagrar
	2.2 Concepts of EM waves –, properties of EM waves, bands, usage
	2.3 Concept of modulation, phasors, constellation diagram, different types & use cases
	2.4 Concepts of antennas – waves & radiation patterns , different antenna types, properties, u
	2.5 Concepts of power & gain calculations - link budget, range equations, S/N , decibels
	2b. INTRODUCTORY CONCEPTS ON COMMS EW
Day 1	2.1 Role of Secure Comms and Information Efficiency
	2.2 Role of Comms Intelligence
	2.3 Role of Counter Comms Intelligence
	2.4 Role of Comms Denial
	2.5 Role of Counter Comms Denial
	2.6 Role of Comms & Nav Spoofing and Deception
	2.7 Role of Civilian Comms Assets – Opportunities and Vulnerabilities
	2.8 Role of Open-Source/ Crowd-Sourced Intelligence
	3. FUNDAMENTALS OF ANTI-JAM/ LPI SPREAD SPECTRUM COMMS
	3.1 Direct Sequence (DS) Spread Spectrum
	3.2 Frequency Hopping (FH) Spread Spectrum
	3.3 Orthogonal frequency division multiplexing - OFDM
	3.4 Hybrid Spread Spectrum Systems
	3.5 Signal Acquisition and Tracking of FH, DSSS etc
	3.6 Case Study: Building a FH and Direct Sequence Radio
	4. INTERCEPT AND ANALYSIS OF SPREAD-SPECTRUM COMMS
	4.1 Intercept and Analysis of frequency-hopping radios
	4.2 Hopping parameters to Track and Analyze
	4.3 Hop-Phase Diagram and Radio-Net Association
	4.4 Dehopping /Demodulation
	4.5 Hop-grouping for wideband Target Position-Fixing
	4.6 Intercept and Analysis of Direct-Sequence Radios
	4.7 Intercept & analysis of OFDM systems
	4.7 Intercept and Analysis of Hybrid Systems
	4.8 Case Study : Inventing the hop-phase diagram & radio net-association

	 5. GEOLOCATING OF TARGETS FROM EMISSIONS OF RADIOS 5.1 Direction-finding Systems 5.2 Time-Difference of Arrival (TDOA) Position Fixing 5.3 Frequency-Difference of Arrival (FDOA) Position Fixing 5.4 Hybrid Position Fixing Systems 5.5 Case study 1: Position-Fixing of Tactical Frequency-Hopping Radios 5.6 Case study 2: Position-Fixing of Direct Sequence Radios 5.7 Case study 3: Space-Based (Satellite) Geolocation of RF Signals
Day 2	 6. FOLLOWER JAMMERS AGAINST FH RADIOS AND COUNTER FOLLOWER JAMMING 6.1 Follower Jammer System Analysis 6.2 Follower Jammer Signal intercept ,Sorting parameters, Analysis 6.3 Follower Jammer Signal intercept ,Sorting parameters, Analysis 6.4 How to defeat Follower Jammers 6.5 Case study 1: Building Follower Jammers against FH Radios 6.6 Case study 2: Defeating Foreign Follower Jammers in a Shootout 7. ADAPTIVE TECHNIQUES TO COUNTER JAMMING 7.1 Adaptive Waveforms 7.2 Adaptive Temporal Filters 7.3 Adaptive Spatial Filters: Adaptive Anti-Jam Antennas 7.4 Adaptive Spatial Filters: Adaptive Anti-Jam Antennas 7.5 Adaptive beamforming & MIMO 7.6 Adaptive Network Routing and Others 7.7 Case Study : Building Adaptive Anti-Jam antenna for Spread-Spectrum 8. SATELLITES in WARFARE – OPPORTUNITIES AND VULNERABILITIES 8.1 GEOSAT , LEOSAT comms – STARLINK, ONEWEB, IRIDIUM. GLOBALSAT, Kuiper 8.2 Space-Based Signal Detection and Geolocation 8.3 Space-Based Imaging Satellites – EO/Radar 8.4 Space-Based Inaging Satellites – EO/Radar 8.5 Adversarial Attack on Satellites/Satcom Terminals & Countermeasures 8.Pseudo Satellites 9. COUNTER COMMS INTELLIGENCE AND COUNTER COMMS DENIAL 9.1 Directional Antennas 9.2 Adaptive Waveform 9.3 Comms spoofing 9.4 Other techniques 10. EW in Gray Zone Ops 10.1 EW against drone attacks – detection , geolocation, ES & EA 10.2 Intercept & use of civilian comms – EA/ ES
	10.3 Frotection of drone commis & nav - EP

OBSE	RVATIONS AND LESSONS FROM RUSSIA-UKRAINE WAR, Middle-East Wars :
a	EW & drones in Hamas-IDF war
b	. Intel Collection from Russian Soldier Comms with AI Tools
c.	Starlink/LeoSat for BVR Sensor-Shooter Loop, BVR Drone Guidance
d	Russian Satcom Jamming - Countermeasures from Starlink etc
e	Decoy Ops
f.	Locating of Russian Comms and Jammers
g.	Skyjack – Jamming & Spoofing of Drones
h	. Robustification of Commercial Drones
i.	Attacks on Static & Mobile Comms Nodes and Countermeasures
k.	Russian modifications on Iranian & Chinese Drones
l.	Ukrainian OSINT
n. p	Russian GPS jamming of JDAMs, GLSDB, GMLRS as per Pentagon Leaks & Countermeasure lus others etc

ABOUT THE SPEAKER:

BILL ENG graduated from Cambridge University with Honors in Physics in 1982 and Masters in 1986. He started his foray into anti-jam comms in mid-1980s with converting then-legacy USAF ARC182 & ARC164 tactical radios into frequency-hopping (FH) radios albeit @ very slow hop rates. At that same time, he also built the early direct-sequence spread-spectrum radios such as GPS receivers

Bill achieved a comms-EW break-through in 1995 when he became first (against fierce competition from top global vendors) to build a smart follower-jammer capable of selectively jamming (thus avoiding fratricide or collateral damage to own-force radios) against tactical FH radio networks. This pioneering work earned him a tech excellence award.

As encore, Bill invented & built an asymmetric counter-measure to follower-jamming which won a shoot-out contest neutralizing smart follower-jammers from various vendors.

The smart follower-jammer work led Bill into target identification & target geolocation of spread-spectrum & frequency-hopping radios. To sort out the hops coming from a FH radio in a noisy environment containing many other radios, Bill invented the hop-phase diagram (still used to this day by EW community) & radio-net association where unique radio signatures can be identified and tracked for location.

In 2000, Bill developed an adaptive anti-jam antenna array for GPS which was successfully flight-tested against powerful Russian GPS jammers (which posed a big nuisance to unprotected guided-munitions such as JDAM-ERs & GMLRS in Ukraine, <u>according to Pentagon Leaks</u> of 2023). This pioneering work won a tech excellence award and proved to be mission-critical in GPS-guided drones/munitions, so pervasive in Ukraine war. It was later also extended to providing adaptive anti-jam beam-forming capability for communications datalinks as well.

In 2005, Bill invented & demonstrated precision-targeted GPS spoofing, anticipating the navigation warfare community & industry by 6 years before Iran famously hijacked a CIA drone with GPS spoofing/com-jam in 2011. Besides steering guided drones/munitions off-course, this pioneering work can potentially disrupt

synchronization of comms networks(eg. Starlink) and comm-intelligence sensors. Bill has also collaborated with LTA on studying the implication of GPS spoofing/jamming on ERP toll collection.

Bill is also a fintech entrepreneur, winning the prestigious MAS fintech awards <u>twice (2016, 2020)</u> and collaborated with many <u>renowned</u> financial institutions on AI solutions to capture & extract conversational intelligence from social chats, predicting market turning points etc amongst other things. More information can be found in <u>https://finchat.tech/finchat-tech-news</u>

WHO SHOULD ATTEND:

This course is designed for operational users & decision makers (military officers & civil servants), practising engineers and technicians, technical managers, system integrators, procurement officers, researchers and students who need to acquire up-to-date robust first-hand knowledge on various aspects of military comms, threats and countermeasures. This course will also benefit technical staff pursuing military communications research and development.

Please email enquiries to: <u>bill@fin.Chat</u> Tel: (65) 93690937 WhatsApp

For latest updates, go to https://warriors.academy/courses/